Abstract
Solvothermal reaction of Cd2+ ions and a hexavalent carboxylic acid (H6666666L) afforded a Cd(II) metal organic framework (Cd-MOF), namely {[Cd3(L)(H2O)2(DMF)2]·5DMF}n (1). Its structure consists of trinuclear CdII building units, which are further bridged by the carboxylic ligand, resulting in a 4,4-connected topological net (sra). By introducing a rigid N-donor ligand 1,4-bis(1-imidazolyl)benzene (dib), a new Cd-MOF (2) {[Cd3(L)(dib)]·3H2O·5DMA}n was isolated, in which the coordinated sites of solvent molecules in 1 were completely replaced by dib. The resulting trinuclear Cd3 subunits are further bridged into a two-fold interpenetrating network with DMA and water molecules located in the void space. The luminescent properties of the two microporous Cd-MOFs dispersed in different solvents have been investigated systematically, demonstrating unique selectivity for the detection of acetone via a fluorescence quenching mechanism. Their luminescence intensities decreased to 50% at an acetone content of 0.3 vol% and were almost completely quenched at a concentration of 1.0 vol%, thus, they can be considered as excellent potential luminescent probes for the detection of acetone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.