Abstract
We introduce a highly scalable video compression system for very low bit-rate videoconferencing and telephony applications around 10-30 kbits/s. The video codec first performs a motion-compensated three-dimensional (3-D) wavelet (packet) decomposition of a group of video frames, and then encodes the important wavelet coefficients using a new data structure called tri-zerotrees (TRI-ZTR). Together, the proposed video coding framework forms an extension of the original zero tree idea of Shapiro (1992) for still image compression. In addition, we also incorporate a high degree of video scalability into the codec by combining the layered/progressive coding strategy with the concept of embedded resolution block coding. With scalable algorithms, only one original compressed video bit stream is generated. Different subsets of the bit stream can then be selected at the decoder to support a multitude of display specifications such as bit rate, quality level, spatial resolution, frame rate, decoding hardware complexity, and end-to-end coding delay. The proposed video codec also allows precise bit rate control at both the encoder and decoder, and this can be achieved independently of the other video scaling parameters. Such a scheme is very useful for both constant and variable bit rate transmission over mobile communication channels, as well as video distribution over heterogeneous multicast networks. Finally, our simulations demonstrated comparable objective and subjective performance when compared to the ITU-T H.263 video coding standard, while providing both multirate and multiresolution video scalability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.