Abstract
Abstract Ti-based Sb-SnO2 electrodes are attractive due to their excellent catalytic activity but have a short service life. Here, we report a highly stable and efficient Ti/TiONC/Sb-SnO2 electrode, which was fabricated through hydrothermal reactions using urea to form TiONC interlayers and electrodeposition-annealing to coat the active Sb-SnO2 catalysts. The triple-layered anode was characterized by highly crystalline structures, high oxygen evolution potentials, and corrosion-resistance properties. The structural arrangement yielded better electrocatalytic performances than that using the control electrode (Ti/Sb-SnO2), showing enhanced organics degradation efficiencies. This new electrode’s lifetime was significantly (~25 times) longer than that of either the control or any Sb-SnO2 electrode modified with non-precious materials reported in the literature. The electrode’s enhanced stability was attributed to the insertion of the mixed C and N interlayers that are resistant to oxidants and corrosive ions. The Ti/TiONC/Sb-SnO2 anode holds promise for use in electrochemical water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.