Abstract

Electron transfer to and from metal oxide nanocrystals (NCs) modulates their infrared localized surface plasmon resonance (LSPR), revealing fundamental aspects of their photophysics and enabling dynamic optical applications. We synthesized and chemically reduced dopant-segregated Sn-doped In2O3 NCs, investigating the influence of radial dopant segregation on LSPR modulation and near-field enhancement (NFE). We found that core-doped NCs show large LSPR shifts and NFE change during chemical titration, enabling broadband modulation in LSPR energy of over 1000 cm-1 and of peak extinction over 300%. Simulations reveal that the evolution of the LSPR spectra during chemical reduction results from raising the surface Fermi level and increasing the donor defect density in the shell region. These results establish dopant segregation as a useful strategy to engineer the dynamic optical modulation in plasmonic semiconductor NC heterostructures going beyond what is possible with conventional plasmonic metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call