Abstract
This paper proposes the design of a highly responsive, compact, non-contact methane telemetry sensor, employing the open-path tunable diode laser absorption spectroscopy (OP-TDLAS) technology. The sensor uses the dual-core structure of FPGA and ARM to achieve high-speed methane telemetry at 100 KHz repeated modulation frequency for the first time with a non-cooperate target, and a higher gas responsive time of 1.8 ms was achieved than previously reported. Moreover, the optical system (L × W × H: 68.8 × 52 × 62.7 mm) and the electronic system (L × W: 70 × 50 mm) make the sensor more compact. Methane gas samples of varying integral concentrations were examined at a distance of 20 m. The amplitude of the absorption peaks was subjected to a linear fit with the standard concentration values, resulting in a robust linear correlation coefficient (R2 = 0.998). Notably, despite the compact form factor of the methane sensor, it demonstrated commendable stability in gas concentration detection, offering a minimum detection limit of 43.14 ppm·m. Consequently, this highly responsive and compact methane sensor, with its open-path feature, is apt for integration into a variety of applications requiring such attributes. These include handheld telemetry devices, Unmanned Aerial Vehicle (UAV) gas detection systems, vehicle mounted gas detection, and laser gas radar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.