Abstract
To understand how data resolution impacts inference on mixed fisheries interactions we developed a highly resolved spatiotemporal discrete-event simulation model MixFishSim incorporating: i) delay-difference population dynamics, ii) population movement using Gaussian Random Fields to simulate patchy, heterogeneously distributed and moving fish populations, and iii) fishery dynamics for multiple fleet characteristics based on population targeting under an explore-exploit strategy. We applied MixFishSim to infer community structure when using data generated from: commercial catch, a fixed-site sampling survey design and the true (simulated) underlying populations. In doing so we thereby establish the potential limitations of fishery-dependent data in providing a robust characterisation of spatiotemporal distributions. Different spatial patterns were evident and the effectiveness of a simulated spatial closure was reduced when data were aggregated across larger spatial areas. The simulated area closure showed that aggregation across time periods has less of a negative impact on the closure success than aggregation over space. While not as effective as when based on the true population, closures based on high catch rates observed in commercial data were still able to reduce fishing on a protected species. Our framework allows users to explore the assumptions in modelling observational data and evaluate the underlying dynamics of such approaches at fine spatial and temporal resolutions. From our application we conclude that commercial data, while containing bias, provides a useful tool for managing catches in mixed fisheries if applied at the correct spatiotemporal scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.