Abstract

The realization of a Laue lens for astronomical purposes involves the mass production of a series of crystalline tiles as optical components, allowing high-efficiency diffraction and high-resolution focusing of photons. Crystals with self-standing curved diffraction planes is a valid and promising solution. Exploiting the quasi-mosaic effect, it turns out to be possible to diffract radiation at higher resolution. In this paper we present the realization of 150 quasi-mosaic Ge samples, bent by grooving one of their largest surface. We show that grooving method is a viable technique to manufacture such crystals in a simple and very reproducible way, thus compatible with mass production. Realized samples present very homogenous curvature. Furthermore, with a specific chemical etch, it is possible to fine adjust one by one the radius of curvature of the grooved samples. Realized crystals was selected for the ASI’s Laue project, that involves the implementation of a prototype of a Laue lens for hard X- and soft γ-ray astronomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.