Abstract

Indium-tin-oxide (ITO) is deposited as a transparent current spreading layer of GaN-based light-emitting diodes (LEDs). To reduce the interfacial Schottky barrier height, a thin p-In/sub 0.1/Ga/sub 0.9/N layer is grown as an intermediate between ITO and p-GaN. The contact resistivity around 2.6/spl times/10/sup -2/ /spl Omega//spl middot/cm/sup 2/ results in a moderately high forward voltage LED of 3.43 V operated at 20 mA. However, the external quantum efficiency and power efficiency are enhanced by 46% and 36%, respectively, in comparison with the conventional Ni-Au contact LEDs. In the life test, the power degradation of the p-In/sub 0.1/Ga/sub 0.9/N-ITO contact samples also exhibits a lower value than that of the conventional ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.