Abstract

Wireless body sensor networks (BSNs) in healthcare systems operate under conflicting requirements. These are the maintenance of the desired reliability and message latency of data transmissions, while simultaneously maximizing battery lifetime of individual body sensors. In doing so, the characteristics of the entire system, including physical, medium access control (MAC), and application layers have to be considered. The aim of this paper is to develop a new MAC model for BSNs to fulfill all these specific rigorous requirements under realistic medical settings. For that purpose, a novel cross-layer fuzzy-rule scheduling algorithm and energy-aware radio activation policies are introduced. The main idea is to integrate a fuzzy-logic system in each body sensor to deal with multiple cross-layer input variables of diverse nature in an independent manner. By being autonomously aware of their current condition, body sensors are able to demand a collision-free time slot, whenever they consider it strictly required (e.g. high system packet delay or low body sensor residual battery lifetime). Similarly, they may refuse to transmit, if there is a bad channel link, thus permitting another body sensor to do so. This results in improving the system overall performance. The proposed MAC model is evaluated by computer simulations in terms of quality of service and energy consumption under specific healthcare scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.