Abstract

Deformation behavior of the Ag nanowire flexible transparent electrode under bending strain is studied and results in a novel approach for highly reliable Ag nanowire network with mechanically welded junctions. Bending fatigue tests up to 500,000 cycles are used to evaluate the in situ resistance change while imposing fixed, uniform bending strain. In the initial stages of bending cycles, the thermally annealed Ag nanowire networks show a reduction in fractional resistance followed by a transient and steady-state increase at later stages of cycling. SEM analysis reveals that the initial reduction in resistance is caused by mechanical welding as a result of applied bending strain, and the increase in resistance at later stages of cycling is determined to be due to the failure at the thermally locked-in junctions. Based on the observations from this study, a new methodology for highly reliable Ag nanowire network is proposed: formation of Ag nanowire networks with no prior thermal annealing but localized junction formation through simple application of mechanical bending strain. The non-annealed, mechanically welded Ag nanowire network shows significantly enhanced cyclic reliability with essentially 0% increase in resistance due to effective formation of localized wire-to-wire contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.