Abstract
The Mathisson-Papapetrou equations in Kerr's background are considered. The region of existence of highly relativistic planar circular orbits of a spinning particle in this background and dependence of the particle's Lorentz $\gamma$-factor on its spin and radial coordinate are investigated. It is shown that in contrast to the highly relativistic circular orbits of a spinless particle the corresponding orbits of a spinning particle are allowed in much wider space region. Some of these orbits show the significant attractive action of the spin-gravity coupling on a particle and others are caused by the significant repulsive action. Numerical estimates for electrons, protons and neutrinos in the gravitational field of black holes are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.