Abstract

Exploring the effect of porphin tautomerism on the regioselectivity of its derivatives is a big challenge, which is significant for the development and application of porphyrin drugs. In this work, we demonstrate the regioselectivity of 2H-diphenylporphyrin (H2-DPP) in the planarization reaction on Au(111) and Ag(111) substrates. H2-DPP monomer forms two configurations (anti- and syn-) via a dehydrogenation coupling, between which the yield of the anti-configuration exceeds 90%. Using high-resolution scanning tunneling microscopy, we visualize the reaction processes from the H2-DPP monomer to the final two planar products. Combined with DFT calculations of the potential reaction pathway and comparative experiments on Au(111) and Ag(111) substrates. Using M-DPP (M = Cu and Fe), we confirm that the regioselectivity of H2-DPP is derived from the reaction energy barrier during the cyclodehydrogenation reaction of different tautomers. This work reveals the regioselectivity mechanism of H2-DPP on the atomic scale, which holds great significance for understanding the chemical conversion process of organic macrocyclic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.