Abstract

This work focuses on surface silver metallization on a 3,3',4,4'-benzophenonetetracarboxylic dianhydride/4,4'-oxydianiline (BTDA/ODA)-based polyimide matrix via a direct ion-exchange self-metallization technique using a simple silver salt, silver fluoride, as the silver precursor. The method involves performing an ion-exchange reaction of damp-dry poly(amic acid) films in silver aqueous solution to form silver(I)-containing precursor films. Thermal treatment under tension converts the poly(amic acid) into polyimide and simultaneously reduces the silver(I) to silver(0), yielding silver layers with excellent reflectivity and conductivity on both film sides. However, significant property differences were exhibited on the upside and underside surfaces of the metallized films and this has been discussed in detail. The variation of surface properties and surface morphologies during the thermal curing cycle was also investigated. The mechanical and thermal properties of the metallized polyimide films are essentially similar to those of the host polyimide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.