Abstract

Integrated microwave photonic filters (IMPFs) are capable of offering unparalleled performances in terms of superb spectral fineness, broadband, and more importantly, the reconfigurability, which encounter the trend of the next-generation wireless communication. However, to achieve high reconfigurability, previous works should adopt complicated system structures and modulation formats, which put great pressure on power consumption and controlment, and, therefore, impede the massive deployment of IMPF. Here, we propose a streamlined architecture for a wideband and highly reconfigurable IMPF on the silicon photonics platform. For various practical filter responses, to avoid complex auxiliary devices and bias drift problems, a phase-modulated flexible sideband cancellation method is employed based on the intensity-consistent single-stage-adjustable cascaded-microring (ICSSA-CM). The IMPF exhibits an operation band extending to millimeter-wave (≥30 GHz), and other extraordinary performances including high spectral resolution of 220 MHz and large rejection ratio of 60 dB are obtained. Moreover, Gb/s-level RF wireless communications are demonstrated for the first time towards real-world scenarios. The proposed IMPF provides broadband flexible spectrum control capabilities, showing great potential in the next-generation wireless communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call