Abstract

Ising Machines (IMs) have the potential to outperform conventional Von-Neuman architectures in notoriously difficult optimization problems. Various IM implementations have been proposed based on quantum, optical, digital and analog CMOS, as well as emerging technologies. Networks of coupled electronic oscillators have recently been shown to exhibit characteristics required for implementing IMs. However, for this approach to successfully solve complex optimization problems, a highly reconfigurable implementation is needed. In this work, the possibility of implementing highly reconfigurable oscillator-based IMs is explored. An implementation based on quasiperiodically modulated coupling strength through a common medium is proposed and its potential is demonstrated through numerical simulations. Moreover, a proof-of-concept implementation based on CMOS coupled ring oscillators is proposed and its functionality is demonstrated. Simulation results show that our proposed architecture can consistently find the Max-Cut solution and demonstrate the potential to greatly simplify the physical implementation of highly reconfigurable oscillator-based IMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.