Abstract

Within the framework of the FTM-NEXT INFN (Fast Time Micropattern gaseous detectors - next of Nuclear Physics National Institute) experiment, we produced hydrogen-free diamond-like carbon films through pulsed-laser deposition to serve as resistive layers in modern resistive micro-pattern gaseous detectors that must work in extreme radiation environments at future colliders. To obtain homogeneous diamond-like carbon coatings, over medium-to-large size (3 cm × 3 cm), with excellent adhesion to the substrate and with typical surface resistivity values in the range of 1–100 MOhm/sq, growth conditions had to be optimized. In this paper we report on the stability of resistive diamond-like carbon layers subjected to increasing doses of irradiation with proton beams accelerated to an energy of 2 MeV. The morphological, structural, and electrical properties, also at the nanoscale level, of diamond-like carbon coatings following ion irradiation were studied by electron microscopy, electron diffraction, electrical transport characterization and scanning tunneling spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call