Abstract

Here a new membrane design concept to improve proton conductivity and to maintain a constant acid doping level for an extended period of time for medium-temperature and low-humidity polymer electrolyte fuel cells (MT/LH-PEFC) is presented. A polymer electrolyte membrane is prepared via thermal rearrangement of hydroxyl-containing polyimide (HPI) precursor membranes over 350 °C, followed by subsequent acid-impregnation. The thermal treatment for 1 h converts HPI into a thermally rearranged polybenzoxazole (TR-PBO) membrane with high surface area, similar to zeolites. The microporous structure and the basic sites (–CN–) in benzoxazole moieties contribute to the stable impregnation of small acidic molecules (e.g., HCl, HNO3, H3PO4, and HPF6) in large quantities within the polymer matrix. The acid-doping level decreases with the increasing size of acidic dopants. TR-PBO impregnated using HCl with the smallest radius has a much higher doping level and excellent proton conductivity (1.60 × 10−1 S cm−1 at 130 °C and RH 28%) when compared with PBI (6.59 × 10−2 S cm−1 at the same conditions). Different from a common acid-doped PBI system, the acid-doped TR-PBO membranes do not exhibit a severe acid leaching even in repeated heating and cooling cycles between 90 and 130 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.