Abstract

New pharmaceutically active compounds can be obtained by modification of existing drugs to access more effective agents in the wake of drug resistance amongst others. To achieve this goal the concept of hybridization was established during the last decade. We employed this concept by coupling two artemisinin-derived precursors to obtain dimers or trimers with increased in vitro activity against Plasmodiumfalciparum 3D7 strain, leukemia cells (CCRF-CEM and multidrug-resistant subline CEM/ADR5000) and human cytomegalovirus (HCMV). Dimer 4 (IC50 of 2.6nM) possess superior antimalarial activity compared with its parent compound artesunic acid(3) (IC50 of 9.0nM). Dimer5 and trimers6 and 7 display superior potency against both leukemia cell lines (IC50 up to 0.002μM for CCRF-CEM and IC50 up to 0.20μM for CEM/ADR5000) and are even more active than clinically used doxorubicin (IC50 1.61μM for CEM/ADR5000). With respect to anti-HCMV activity, trimer6 is the most efficient hybrid (IC50 0.04μM) outperforming ganciclovir (IC50 2.6μM), dihydroartemisinin(IC50 >10μM) and artesunic acid (IC50 3.8μM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.