Abstract

Several novel γ-carboline derivatives were identified as selective inhibitors of bovine viral diarrhea virus (BVDV) replication in cell cultures. Among them, 3,4,5-trimethyl-γ-carboline (SK3M4M5M) was the most active against BVDV (Nose strain) in MDBK cells, with a 50% effective concentration of 0.017 ± 0.005 μM and a selectivity index of 435. The compound inhibited viral RNA synthesis in a dose-dependent fashion. In a time of drug-addition experiment during a single viral replication cycle, SK3M4M5M lost its antiviral activity when first added at 8 h or later after infection, which coincides with the onset of viral RNA synthesis. When selected γ-carboline derivatives, including SK3M4M5M, were examined for their inhibitory effect on the mutant strains resistant to some classes of nonnucleoside BVDV RNA-dependent RNA polymerase inhibitors, all of which target the top of the finger domain of the polymerase, the strains displayed cross-resistance to the γ-carboline derivatives. These results indicate that the γ-carboline derivatives may possibly target a hot spot of the RNA-dependent RNA polymerase. Although SK3M4M5M was highly active against BVDV, the compound proved inactive against hepatitis C virus (HCV) in HCV RNA replicon cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call