Abstract

Hierarchically porous carbon nanomaterials have shown significant potential in electrochemical energy storage due to the promoted charge and mass transfer. Herein, a facile template-free method is proposed to prepare nitrogen-doped carbon superstructures (N-CSs) with multi-level pores by pyrolysis of polymeric precursors derived from the intramolecular cyclization-induced crystallization-driven self-assembly (ICI-CDSA) of poly(amic acid) (PAA). The excellent thermal stability of PAA enables the N-CSs to inherit the hierarchical structure of the precursors during pyrolysis, which facilitates the formation of meso- and macropores while the decomposition of the precursors promotes the creation of micropores. Electrochemical tests demonstrate the ultrahigh surface-area-normalized capacitance (76.5 μF cm−2) of the N-CSs facilitated by the hierarchically porous structure, promoting the charge and mass transfer, as well as the high utilization of pyridinic and pyrrolic nitrogen (12.9%) to provide significant pseudocapacitance contribution up to 40.6%. Considering the diversity of monomers of PAA, this ICI-CDSA strategy could be extended to prepare carbon nanomaterials with various morphologies, pore structures and chemical compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.