Abstract

Highly porous layered double hydroxide (LDH) and its calcined mixed metal oxide (MMO) were obtained by utilizing egg white (EW) as a biogenic porous template. The LDH was prepared through coprecipitation under the existence of a beaten EW meringue, and the corresponding MMO was obtained by calcining LDH at 500 °C. According to X-ray diffraction, the crystal structure of LDH and MMO was well-developed with or without EW. In contrast, the crystallinity analyses and microscopic investigations clearly showed differences in the particle orientation in the presence of EW; the protein arrangement in the EW foam induced the ordered orientation of LDH platelets along proteins, resulting in well-developed inter-particle pores. As a result, the distinctive particle arrangement in EW-templated samples compared with non-templated ones showed dramatically enhanced specific surface area and porosity. The nitrogen adsorption–desorption isotherm exhibited that the high specific surface area was attributed to the homogeneous nanopores in EW-templated LDH and MMO, which originated from the sacrificial role of the EW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.