Abstract
Highly porous gelatin–silica hybrid scaffolds with high porosity, large pores and large interconnections, as well as tailored surface textures were produced using a newly developed direct foaming/freezing. Two different types of precursors as the silica source, 3-glycidoxyproyltrimethoxysilane (denoted as “GS”) and sol–gel derived silica (denoted as “SS”), were used for producing the porous GLA–GS and GLA–GS–SS hybrid scaffolds. In this method, air bubbles could be vigorously incorporated into the GLA–GS and GLA–GS–SS mixtures and then stabilized by rapid freezing of the foamed mixtures at −70 °C. Both the porous GLA–GS and GLA–GS–SS hybrid scaffolds produced herein had a highly porous structure (porosity > 90 vol%, pore size = 200–500 μm, interconnection size = 100–200 μm) with a uniform distribution of the silica phase in the gelatin matrix. In addition, surface textures with a rugged morphology could be created after immersion of the porous GLA–GS and GLA–GS–SS hybrid scaffolds in ethanol at −20 °C for 24 h. The porous GLA–GS and GLA–GS–SS hybrid scaffolds showed much higher mechanical properties than the porous GLA scaffold, while preserving excellent in vitro biocompatibility, demonstrating potential application as the bone scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.