Abstract

The design of a material porous microstructure with interconnected micro-meso-macropores is a key issue for the successful development of carbon-derived materials for supercapacitor applications. Another important issue is the nature of these carbon materials. For those reasons, in this study, novel hierarchical micro-meso-macroporous silicon oxycarbide-derived carbon (SiOC-DC) was obtained via chlorine etching of carbon-enriched SiOC prepared via pyrolysis (1100-1400 °C) of sol-gel triethoxysilane/dimethyldiphenysiloxane hybrids. In addition, and for the first time, non-conventional Raman parameters combined with the analysis of their microstructural characteristics were considered to establish their relationships with their electrochemical response. The sample pyrolyzed at 1100 °C showed planar and less-defective carbon domains together with the largest specific surface area (SSA) and the highest volume of micro-meso-macropores, which upgraded their electrochemical response. This sample has the highest specific capacitance (Cs = 101 Fg-1 (0.2 Ag-1)), energy (Ed = 12-7 Wh-1 kg-1), and power densities (Pd = 0.32-35 kw kg-1), showing a good capacitance retention ratio up to 98% after 10,000 charge-discharge cycles at 0.5 Ag-1. At a pyrolysis temperature ≥ 1200 °C, the carbon domains were highly ordered and tortuous with a high degree of interconnection. However, SSA and pore volumes (micro-meso-macropores) were significantly reduced and downgraded the Cs, Ed, and Pd values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.