Abstract

Two series of novel amorphous poly(aryl ether phthalazine)s have been prepared via an intramolecular ring closure reaction of poly(aryl ether ketone)s (PAEKs) with hydrazine monohydrate. Fluorinated PAEKs, which display solubility in solvents incorporating a ketone functionality such as acetone or ethyl acetate, were converted to poly(aryl ether phthalazine)s to observe if these polymers would display similar solubility characteristics. The poly(aryl ether phthalazine)s have glass transition temperatures in the range of 278-320°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. The fluorinated poly(aryl ether phthalazine)s were not soluble in ketonic solvents. A series of poly(aryl ether phthalazine)s incorporating pendant 2-naphthalenyl moieties has been prepared in an attempt to produce amorphous, thermally stable polymers with high glass transition temperatures. The polymers have glass transition temperatures in the range of 287-334°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. Poly(aryl ether phthalazine)s undergo an exothermic reaction above the glass transition temperature. The major product of this reaction is a rearrangement of the phthalazine moieties to quiazoline moieties, however some crosslinking of the polymers occurs. Cured samples of the poly(aryl ether phthalazine)s show a small increase in the polymer T g and are insoluble in all solvents tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call