Abstract

For energy-saving purposes, the pursuit of ultrahigh permeance nanofiltration membranes without sacrificing selectivity is never-ending in desalination, wastewater treatment, and industrial product separation. Herein, we reported a novel facile route to engineer a highly porous and superhydrophilic nanofibrous substrate to mediate the interfacial polymerization between trimesoyl chloride and piperazine, generating an ultrathin PA active layer (∼13 nm) with a hierarchical crumpled surface. The wet laying process and subsequent plasma treatment endowed a rougher and more hydrophilic surface for ethylene vinyl alcohol copolymer (EVOH) nanofibers in the thin compact nanofibrous scaffold (∼9 μm) with a mean pore size of 210 nm, radically different from the nanofibrous membrane by other methods. Nanofibrous scaffold with these features provide abundant thin-thick alternative continuous water layers between nanofibers and organic phase, facilitating the formation of the abovementioned PA layer. As a result, an ultrahigh permeance of 42.25 L·m-2 h-1 bar-1 and a reasonably high rejection of 95.97% to 1000 ppm Na2SO4 feed solution were obtained, superior to most state-of-the-art NF membranes reported so far. Our work provides an easy and scalable method to fabricate advanced PA NF membranes with outstanding performance, highlighting its great potential in liquid separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.