Abstract

AbstractThe development of high resolution, high aspect ratio metal dichalcogenide nanostructures is one of the most important issues in 2D material researchers due to the potential to exploit their properties into high performance devices. In this study, for the first time a way of fabricating metal dichalcogenide nanostructures with high resolution (<50 nm scale) and high aspect ratios (>120) by chemical vapor deposition assisted secondary sputtering phenomenon is reported. This approach can universally synthesize various types of metal dichalcogenides including MoS2, WS2, and SnS2, implying the possibility for further utilization with selenides and tellurides. Also, this method can produce highly periodic complex patterns such as hole–cylinder, concentric rings, and line patterns, which are unprecedented in previous reports. The feature size and aspect ratio of the metal dichalcogenide structures can be manipulated by controlling the dimensions of the photoresist prepatterns, while the pattern resolution and layer orientation can be manipulated by controlling the thickness of the deposited metal film. It is demonstrated that nanostructures with high resolution and high aspect ratio significantly improve gas‐sensing properties compared with previous metal dichalcogenide films. It is believed that the method can be a foundation for synthesizing various materials with complex patterns for future applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.