Abstract

In the past few years, the number of processor cores of top ranked supercomputers has increased drastically. It is challenging to design efficient parallel algorithms that offer such a high degree of parallelism, especially for certain time-dependent problems because of the sequential nature of “time”. To increase the degree of parallelization, some parallel-in-time algorithms have been developed. In this paper, we give an overview of some recently introduced parallel-in-time methods, and present in detail the class of space-time Schwarz methods, including the standard and the restricted versions, for solving parabolic partial differential equations. Some numerical experiments carried out on a parallel computer with a large number of processor cores for three-dimensional problems are given to show the parallel scalability of the methods. In the end of the paper, we provide a comparison of the parallel-in-time algorithms with a traditional algorithm that is parallelized only in space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.