Abstract

Highly oriented and large-scale ZnO nanorod arrays have been successfully synthesized on zinc foil by a simple, low-temperature, solution-phase approach. In this approach, zinc foil was used not only as a substrate but also as a zinc-ion source for the direct growth of ZnO nanorod arrays. X-ray diffraction (XRD) analysis, high-resolution TEM (HRTEM) images, and selected-area electron diffraction (SAED) patterns indicated that the structure of the ZnO nanorod arrays on the zinc foil substrate was single-crystalline and grown in the [0001] direction with a wurtzite structure. The optical properties of the ZnO nanorod arrays were characterized by UV−vis diffuse reflectance, Raman, and photoluminescence spectroscopies. The photocatalytic activity of the ZnO nanorod arrays was tested by degradation of 4-chlorophenol (4-CP) under UV light irradiation compared to that of a ZnO nanorod film grown on a Ti substrate, indicating that the as-synthesized ZnO nanorod arrays exhibit excellent photocatalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.