Abstract
Dendrimers are artificial polymeric macromolecules which are widely considered to be a promising tool for future gene therapy applications. They have been used as efficient delivery vehicles for antisense oligonucleotides targeting the interior of cells. We demonstrate that dendriplexes formed from anti-HIV oligodeoxynucleotides ANTI-TAR, GEM91, and SREV in complex with generation 4 maltose (PPI-Mal G4) and maltotriose (PPI-Mal-III G4) modified poly(propylene imine) dendrimers are able to self-assemble into highly organized 1D and 3D nanostructures. The resulting nanostructures were characterized by fluorescence methods, laser Doppler electrophoresis, dynamic light scattering (DLS), atomic force microscopy (AFM) and molecular modeling. The results show that ANTI-TAR and GEM 91 dendriplexes self-assemble into fibrils with length scales up to several hundreds of nm. SREV, on the contrary, forms quadrilateral- like 3D nanostructures. A good correlation between the various experimental methods and molecular modeling indicates the formation of those nanostructures in solution. Space symmetry of the oligonucleotides and the resulting dendriplex monomeric units are probably the most important factors which influence the way of self-assembling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.