Abstract

Highly ordered TiO2 nanotube array prepared by a potentiostatic anodization shows a considerable potential for improving the transport of the photogenerated electrons in the TiO2 film, since the ordered architecture can provide a unidirectional electric channel and reduce the grain boundaries. Here, we report on the application of highly ordered TiO2 nanotube arrays with different lengths for the photoelectrocatalytic degradation of phenol. The lengths of the nanotube arrays can be controlled by the electrolyte media, anodization time, or both. The photoelectrocatalytic activity shows a dependence on the length of the nanotube arrays. Under 3.1 mW/cm2 irradiance of ultraviolet light, a short nanotube array shows better photoelectrocatalytic activity than a long nanotube array, which can be explained by the reduced recombination effects. When compared with a P25 TiO2 particulate film with similar thickness and geometric area, the nanotube array shows a stronger attachment to the parent titanium substrate a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.