Abstract

Microstructures of hundreds of micron thick poly(styrene-block-isoprene) copolymer films solution-cast in a cylindrical tube with the solvent evaporation controlled were investigated by transmission electron microscope (TEM), small angle X-ray scattering (SAXS) and optical microscope (OM). In a block copolymer with cylindrical polyisoprene microdomains, the orientation of the cylinders was varied along radial direction of the cylindrical tube. Highly aligned hexagonal arrays of in-plane polyisoprene cylinders were formed with their cylindrical axis parallel to the circumference of the tube in the regimes close to the wall edge. In contrast randomly ordered microdomains were observed at the center of the tube. We have also found that the orientation depends on the solvent evaporation rate and an intermediate rate (∼2.3nL/s) provides the best orientation. In the case of a block copolymer with a bicontinuous double gyroid structure, we obtained a globally ordered microstructure where [111] crystallographic direction was parallel to the circumference of the tube. For both block copolymers, the area of highly ordered arrays of nanoscopic domains is over 1mm2. Development of the orientation was explained by coupling two orthogonal fields: (1) The flow of a solution induced by strong capillary force at a meniscus between the cylindrical tube wall and the block copolymer solution and (2) the solvent evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.