Abstract

Ni-rich layered oxides are potential cathode candidate’s materials for Li-ion batteries due to their low cost and high energy density. However, it is difficult to reproducibly prepare uniformly distributed element and well-controlled morphology of Ni-rich layered oxide particles. This study develops a continuous microfluidic reaction process to synthesize spherical carbonate precursors (Ni0.6Mn0.2Co0.2CO3). The as-synthesized LiNi0.6Co0.2Mn0.2O2 materials exhibit well-defined microsphere morphology, uniform particles size distribution, better thermal stability and homogeneous transition metal distribution, due to the excellent mixing, well mass and heat transfer rate during the microfluidic reaction. Moreover, the as-prepared LiNi0.6Co0.2Mn0.2O2 materials achieve higher initial capacity, excellent electrochemical reversibility and capacity retention than that of the samples prepared by traditional co-precipitation. Therefore, our results demonstrate that microfluidic reaction is a simple and effective synthesis technology for preparing Ni-rich layered cathode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call