Abstract

Co3O4 with a spinel structure is a very active oxide catalyst for the oxidation of CO. In such catalysts, octahedrally coordinated Co(3+) is considered to be the active site, while tetrahedrally coordinated Co(2+) is assumed to be basically inactive. In this study, a highly ordered mesoporous CoO has been prepared by H2 reduction of nanocast Co3O4 at low temperature (250 °C). The as-prepared CoO material, which has a rock-salt structure with a single Co(2+) octahedrally coordinated by lattice oxygen in Fm3̅m symmetry, exhibited unexpectedly high activity for CO oxidation. Careful investigation of the catalytic behavior of mesoporous CoO catalyst led to the conclusion that the oxidation of surface Co(2+) to Co(3+) causes the high activity. Other mesoporous spinels (CuCo2O4, CoCr2O4, and CoFe2O4) with different Co species substituted with non/low-active metal ions were also synthesized to investigate the catalytically active site of cobalt-based catalysts. The results show that not only is the octahedrally coordinated Co(3+) highly active but also the octahedrally coordinated Co(2+) species in CoFe2O4 with an inverse spinel structure shows some activity. These results suggest that the octahedrally coordinated Co(2+) species is easily oxidized and shows high catalytic activity for CO oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.