Abstract
Highly-ordered GaAs/AlGaAs quantum-dot arrays (QDA) were grown by molecular-beam epitaxy on GaAs (001) using masks of anodic nanochannel alumina (NCA). The QDA replicated the hexagonal lattice pattern of the NCA masks with period spacing of 100 nm. The circular disk-like dots were defined by the nanohole channels of NCA masks with size adjustable between 45 and 85 nm. Both single- and double-well GaAs/AlGaAs QDA exhibited strong photoluminescence. The single-well QDA showed a narrow peak at 1.64 eV with full width at half maximum of only 16 meV, indicating good size uniformity and crystal quality for the QDA. NCA masked epitaxial growth is thus shown to be a promising general approach for fabricating various heterostructure QDA, including both strained and lattice-matched heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.