Abstract

One-pot self-assembled hybrid films were synthesized by the cohydrolysis of methyltriethoxysilane and tetraethoxysilane and deposited via dip-coating. The films show a high "defect-free" mesophase organization that extends throughout the film thickness and for domains of a micrometer scale, as shown by scanning transmission electron microscopy. We have defined these films defect-free to describe the high degree of order that is achieved without defects in the pore organization, such as dislocations of pores or stacking faults. A novel mesophase, which is tetragonal I4/mmm (space group), is observed in the films. This phase evolves but retains the same symmetry throughout a wide range of temperatures of calcination. The thermal stability and the structural changes as a function of the calcination temperature have been studied by small-angle X-ray scattering, scanning transmission electron microscopy, and Fourier transform infrared spectroscopy. In situ Fourier transform infrared spectroscopy employing synchrotron radiation has been used to study the kinetics of film formation during the deposition. The experiments have shown that the slower kinetics of silica species can explain the high degree of organization of the mesostructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.