Abstract

To rival the performance of modern integrated circuits, single-molecule devices must be designed to exhibit extremely nonlinear current-voltage (I-V) characteristics1-4. A common approach is to design molecular backbones where destructive quantum interference (QI) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) produces a nonlinear energy-dependent tunnelling probability near the electrode Fermi energy (EF)5-8. However, tuning such systems is not straightforward, as aligning the frontier orbitals to EF is hard to control9. Here, we instead create a molecular system where constructive QI between the HOMO and LUMO is suppressed and destructive QI between the HOMO and strongly coupled occupied orbitals of opposite phase is enhanced. We use a series of fluorene oligomers containing a central benzothiadiazole10 unit to demonstrate that this strategy can be used to create highly nonlinear single-molecule circuits. Notably, we are able to reproducibly modulate the conductance of a 6-nm molecule by a factor of more than 104.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.