Abstract
The properties of phase-sensitive amplification (PSA) in highly nonlinear fibers are studied. We present a soft glass fiber designed for high nonlinearity and broadband, low dispersion and simulate its performance as a PSA device for ultrafast bitrate signals at 640 Gb/s. The effect of the fiber design parameters on its PSA performance have been studied and the final design has been optimized using a genetic algorithm to have a high nonlinearity and low, flat dispersion. This design has subsequently been compared to other highly nonlinear fibers in order to highlight the effect of both using soft glass and the design and optimization technique. Modelled fiber performance shows squeezing of phase noise in a 5 m length of fiber with 32 dBm total power in the signal and pumps. The fiber length we have used in our model is two orders of magnitude shorter than the state of the art silica based PSA devices for comparable power levels. In addition, fabrication tolerance modelling is done to show that our fiber design is better able to manage fluctuations in the dispersion due to the high nonlinearity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.