Abstract

A new nonporous Zn-based metal-organic framework (NPMOF) synthesized from a high nitrogen-containing rigid ligand was converted into porous carbon materials by direct carbonization without adding additional carbon sources. A series of NPMOF-derived porous carbons with very high N/O contents (24.1% for NPMOF-700, 20.2% for NPMOF-800, 15.1% for NPMOF-900) were prepared by adjusting the pyrolysis temperatures. The NPMOF-800 fabricated electrode exhibits a high capacitance of 220 F/g and extremely large surface area normalized capacitance of 57.7 μF/cm2 compared to other reported MOF-derived porous carbon electrodes, which could be attributed to the abundant ultramicroporosity and high N/O co-doping. More importantly, symmetric supercapacitor assembled with the MOF-derived carbon manifests prominent stability, i.e., 99.1% capacitance retention after 10,000 cycles at 1.0 A/g. This simple preparation of MOF-derived porous carbon materials not only finds an application direction for a variety of porous or even nonporous MOFs, but also opens a way for the production of porous carbon materials for superior energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.