Abstract

Early attrition of drug candidates, including kinase inhibitors, often occurs due to issues that arise during preclinical safety and efficacy evaluation. This problem may be exacerbated by the fact that these studies might fail to consider the basic physiological differences that could exist between human patients and animal models. We report the development of a targeted mass spectrometry-based assay capable of monitoring >50 different kinases using peptides conserved in humans and the key preclinical species used in drug development (mouse, rat, dog, and cynomolgus monkey). These methods were then used to profile interspecies kinome variability in spleen with three of the current techniques used in targeted proteomics (MRM, PRM, and IS-PRM). IS-PRM provides the highest number of kinase identifications, and the results indicate that while this initial set of kinases exhibits high correlation between species for this tissue type, distinct species-specific differences do exist, especially within the cyclin-dependent kinase family. An initial screen in two species with the kinase inhibitor dasatinib in competition with the chemoproteomic kinase-binding probe XO44 demonstrated how the targeted methods can be further applied to study species-specific inhibitor occupancy profiles. Understanding such differences could help rationalize the findings of preclinical studies and have major implications for the selection of these animals as models in kinase drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.