Abstract

Nitrogen-doped carbon materials are known to be promising candidates as oxygen reduction reaction electrocatalysts used in fuel cells. However, developing metal-free catalysts with high performance and stability still remains a big challenge. Herein we report a new route by using the Maillard reaction, to caramelize ribose in a dispersing salt matrix, followed by carbonization of this caramel to synthesize metal-free catalysts. This catalytic material has the morphology of microporous nitrogen doped graphene-like carbon, and a highest surface area of 1261 m2 g−1 with a large amount of micropores. Such microporous structure offers numerous defects that generate a large number of reactive sites. As a result, when used as the cathode materials in fuel cells, the fuel cell shows a high power density of 547 mW cm−2 under 1.0 atm back pressure with good stability with only 12.5% loss after 250 h. Such catalyst has good performance in the class of metal-free oxygen reduction reaction catalysts, and is possible for commercial use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call