Abstract

The mesoporous metal–organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal–organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal–organic frameworks by using CO2-expanded liquids as switchable solvents. The mesocellular metal–organic frameworks with large mesopores (13–23 nm) are formed, and their porosity properties can be easily adjusted by controlling CO2 pressure. Moreover, the use of CO2 can accelerate the reaction for metal–organic framework formation from metal salt and organic linker due to the viscosity-lowering effect of CO2, and the product can be recovered through CO2 extraction. The as-synthesized mesocellular metal–organic frameworks are highly active in catalysing the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call