Abstract

Nonthermal plasmas allow the preparation of ligand‐free quantum dots combining high production rates with superior crystalline quality and luminescence properties. Here, ZnO quantum dots are produced in a radiofrequency capacitively‐coupled plasma, exhibiting size dependent photoluminescent quantum yields up to 60% after air exposure—the highest reported to date for any compound semiconductor quantum dots prepared in the gas phase. Systematic studies indicate the importance of the surface for the observed luminescence behavior. The high luminescent quantum yields in the visible range of the spectrum and the ligand‐free, scalable synthesis make these quantum dots good candidates for light emitting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.