Abstract
AbstractMetal nanoclusters (NCs) are being intensely pursued as prospective luminophores because of their tunable electronic and optical properties. Among the various fluorescent NCs, gold nanoclusters (GNCs) are attractive due to their biocompatibility and excellent photostability, even if so far, they have had limited application potential due to poor quantum yield (QY). In this context, a facile route is demonstrated to tune up the photophysical and photochemical activities of water‐borne luminescent GNCs through the formation of self‐assembled nanocluster superstructures. The approach involves the controlled introduction of Sn2+ ions, directing GNCs from individual particles into 3D spherical gold nanocluster colloidal frameworks (GNCFs). In these, the reduction in the nonemissive relaxation pathways leads to significant enhancement of luminescence signals (QY from ≈3.5% to ≈25%), likely owing to restricted movements of ligands. This approach paves ways for GNCFs as a potent agent for biomedical imaging and therapies, while their high photocatalytic activity is an added advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.