Abstract

A solution processable Zn(EtXn)2(octylamine) precursor has been used to deposit nanocrystalline ZnS thin films which can effectively host CdSe–CdS–ZnS quantum dots (QDs) with their native surface chemistry intact. The formation of such hybrid QD:ZnS composites proceeds through the initial decomposition of the octylamine stabilized zinc xanthate precursor to form nanocrystalline ZnS. To gain insight into this decomposition process we have utilized headspace gas chromatography–mass spectrometry (HS GC-MS), thermogravimetric analysis coupled with mass spectrometry (TGA-MS), grazing angle attenuated total reflectance Fourier transform infrared spectroscopy (GAATR FTIR), and grazing angle X-ray diffraction (GAXRD). Through these characterizations we identify that the major decomposition route of Zn(EtXn)2(octylamine) to form ZnS begins at 100 °C, generating predominantly CO2, COS, CS2, and ethanol as gaseous products. The octylamine used to solubilize the metal complex is found to remain adsorbed within the Zn...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.