Abstract

Heteroatom doped carbon dots (CDs) with distinct merits are of great attractions in various fields such as solar cells, catalysis, trace element detection and photothermal therapy. In this work, we successfully synthesized blue-fluorescence and photostability manganese-doped carbon dots (Mn-CDs) with a quantum yield up to 7.5%, which was prepared by a facile one-step hydrothermal method with sodium citrate and manganese chloride. The Mn-CDs is the high mono-dispersity, uniform spherical nanoparticles. The Mn element plays a critical role in achieving a high quantum yield in synthesis of carbon dots, which was confirmed by the structure analysis using XPS and FTIR. Spectroscopic investigations proved that the decent PLQY and luminescence properties of Mn-CDs are due to the heteroatom doped, oxidized carbon-based surface passivation. In addition, the Mn-CDs are demonstrated as promising fluorescent sensors for iron ions with a linear range of 0–500 μmol/L and a detection limit of 2.1 nmol/L (turn-off), indicating their great potential as a fluorescent probe for chemical sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.