Abstract

Shaping the topography of an atomically thin film is a novel way to engineer the optoelectronic performances of an ideal surface. In this letter, we study the photoluminescence characters of a WSe2 monolayer of spiky nanostructures and rippled morphology, which are induced during the transfer process of monolayer to a Bi2Se3 flake. Photo-excited excitons are trapped by these nanostructures, resulting in energy redshifts up to 150 meV at low temperature. We study the polarization degrees of the corresponding radiation signals and the polarization directions. Interestingly, the appearance features of monolayer correlates with the optical polarization property of the photoluminescence. Our work attracts insight to the relevance between surface topography and the dipole polarization on an ideal surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.