Abstract

The purpose of this study was to combine a recently introduced spatiotemporal parallel imaging technique, PEAK-GRAPPA (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition), with two-dimensional (2D) cine phase-contrast velocity mapping. Phase-contrast MRI was applied to measure the blood flow in the thoracic aorta and the myocardial motion of the left ventricle. To evaluate the performance of different reconstruction methods, fully acquired k-space data sets were used to compare conventional parallel imaging using GRAPPA with reduction factors of R = 2-6 and PEAK-GRAPPA as well as sliding window reconstruction with reduction factors R = 2-12 (net acceleration factors up to 5.2). PEAK-GRAPPA reconstruction resulted in improved image quality with considerably reduced artifacts, which was also supported by error analysis. To analyze potential blurring or low-pass filtering effects of spatiotemporal PEAK-GRAPPA, the velocity time courses of aortic flow and myocardial tissue motion were evaluated and compared with conventional image reconstructions. Quantitative comparisons of blood flow velocities and pixel-wise correlation analysis of velocities highlight the potential of PEAK-GRAPPA for highly accelerated dynamic phase-contrast velocity mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.