Abstract

The pseudocapacitors based on metal–organic frameworks (MOFs) are one of the state-of-the-art candidates to improve the future energy storage systems because of their high porosity, diverse functional groups, and potential as the template. In this study, the direct growth of a urea-assisted hierarchically layered cobalt-based MOF (u-hl-MOF) on Ni foam and direct growth of nanorods and nanosheets on the surface of the u-hl-MOF via the MOF-mediated approach without the addition of a cobalt precursor are reported. After the annealing process with sulfur powder under an Ar flow is complete, only the surface of the u-hl-MOF is converted into cobalt sulfide@carbon (Co1–xS@C), whereas the bulk internal u-hl-MOF remains without any degradation. Therefore, a core–shell structure of u-hl-MOF@Co1–xS@C (u-hl-MSC) is formed, which exhibits a high areal specific capacitance of 13.1 F cm–2 with a three-electrode system. A solid-state flexible asymmetric supercapacitor (ASC) is also assembled using poly(vinyl alcohol)/KO...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.