Abstract

To develop an efficient and recyclable photocatalyst, ternary magnetic Fe3O4@ZnO/g-C3N4 nanocomposites were synthesized for the photodegradation of methylene blue (MB). The microstructures, magnetic response and photocatalytic activity of the as-prepared nanocomposites were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), N2 adsorption–desorption isotherms and spectrophotometer. All results indicate that ZnO nanoparticles anchor on the surface of Fe3O4 nanoparticles and Fe3O4@ZnO exists on the surface of g-C3N4 to form Fe3O4@ZnO/g-C3N4 nanocomposites. The photocatalytic activity to MB of Fe3O4@ZnO/g-C3N4 nanocomposites is significantly higher than those of pristine g-C3N4 and Fe3O4@ZnO. Owing to the heterojunctions between the interface of g-C3N4 and ZnO, the high separation efficiency of the photogenerated electrons and holes increases the radicals [Formula: see text]OH and [Formula: see text]O[Formula: see text] to photodegrade MB. Fe3O4@ZnO/g-C3N4 (20%) presents the highest MB removal of 93.74% and could be easily separated from solution with magnetic separation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call