Abstract

Photonic-based functional designs and integrations for advanced optoelectronic devices are regarded as promising candidates considering the enhancement of efficiency and tunability. With the aim to improve photovoltaic performance by increasing photon harvesting, the study presents the prominent findings of experimental and theoretical comparison of optical and electrical evaluation integrating a functionally designed one-dimension photonic crystal (1D-PC) into CdTe solar cells. Since transparency of the CdS/CdTe heterojunction based solar cell (SC) is reduced by a photonic band gap formed by (MgF2/MoO3)N 1D-PC; namely, re-harvesting is improved by increasing absorbance. The period number at resonance wavelength of 850 nm and photocurrent density ({J}_{ph}) have remarkable influence on the investigation. For four periods, the reflectance in the region of photonic band gap is sufficient for photon harvesting and saturation occurs. The photovoltaic performances are comparatively analysed for SCs with and without 1D-PC produced at optimal values. The open-circuit voltage does not change, besides, short-circuit current density and maximum-current density vary between 15.86–17.23 mA cm−2 and, 13.08–15.41 mA cm−2. Having integrated the 1D-PC into the structure, it is concluded that the FF and power conversion efficiency increase from 55.27 to 63.35% with an improvement of 15.91% and, from 8.26 to 10.47% with an improvement of 21.10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.